11 Ekim 2011 Salı

Mimari Plan üzerinde Yangın Tesisatı..

Arkadaşlar, Mühendislikte yangınla mücadele konusunda geçen yazılarımda sizleri bilgilendirmiştim, bu yazımda gerçek mimari planlar üzerinde yangınla mücadele usullerine bakacağız. Mekanik Tesisat projelerinde yangınla mücadele projeleri genellikle sıhhi tesisat paftaları ile entegre olarak tasarlanır, sonuçta yangınla mücadele kullandığımız en büyük silahımız su da sıhhi tesisat pastalarına işleniyor ve yangın hidrofor daireleri de yapının ana su ihtiyacını karşılayan su depoları ve sıhhi tesisat kullanma suyu hidroforları ile entegre çalışıyor.

Mimari planlar üzerinde yangınla mücadelede kullanacağımız sprinkler ve yangın dolapları sistemi ile saha paftalarında hidrant sistemini tasarlarken dikkat etmemiz gereken en büyük husus sprink ve diğer aparatların ihtiyacını karşılayacak debiyi sağlamak üzere seçeceğimiz boru çaplarıdır. Yangın dolapları dizaynı 2” boru çapından başlamaktadır başka bir değişle hattın en ucundaki yangın dolabını besleyecek boru çapı 2” den küçük olmamalıdır. Genellikle 4-5 yangın dolabından sonra çapı bir üst çapa taşımakta fayda var. Sprinklerde ise en küçük boru çapımız 1” dir. Sprinkler tesisatı biraz daha fazla eleman barındırdığından bir boru çapı tablosuna ihtiyacımız olacak.


 

Sprink Sayısı

Boru çapı

1-2

1”

3

1 ¼”

4-5

1 ½”

6-10

2”

11-20

2 ½”

21-40

3”

41-100

4”

101-160

5”

160 ve üzeri

6”

Yukarıdaki tabloyu kullanarak planlar üzerinde sprinklerimizi çaplandırıyoruz. Örnek projemizde ifade edicek olursak

Görüldüğü üzere her sprinkden sonra ilgili adedi besleyecek boru çapını tablomuz yardımı ile plan üzerine işliyoruz. Yeşil ile çizilen sprink merkezli daireler sprink etki alanını ifade ediyor. Yangın paftalarında gözterilmesi gerekmemekle beraber, plan üzerinde sprinklerin müdahale edemeyeceği yerleri ortaya çıkardığı için çizilmesinde fayda var. Yeni bir kural olmalakla beraber ana branşmanların sonlandığı yerlerde projeyi okuyanlara kolaylık sağlaması için beslenen sprink adedini de çapı ile beraber projeye işliyoruz. Bu örnek planda 8 Ad. Lik bir sprink hattını planlamış olduk. Tüm bu hatlar proje üerinde en uygun tesisat şaftını kullanarak hidrofor dairesine indirilir.

Tesis ve yapının yangın risk sınıfına göre sprnikler sisteminin herhangi bir besleme koluna bağlanan sprinklerin koruduğu birim kat için en büyük büyük koruma alanı, düşük ve orta tehlike sınıfı için en fazla 4,800 m2 ve yüksek tehlike sınıfı için en fazla 2,300 m2 olmalıdır.

Yine her sprink ana hattı tesisat şaftlarına bağlanmadan önce bir test ve drenaj vana sistemi ile techiz edilmelidir. Ana sprinkler hattı bir superwizor swichli vana ve flow swich ile sprinkler branşmanına bağlandıktan sonra test ve drenaj vana gurubu ile by-pass edilmelidir. Bu by-pass hattının bir ucu en yakındaki pissu giderine bağlanmalıdır.

Bir dahaki yazımda yangınla müdalece için nasıl bir hidrofor dairesi tasarlanması gerekir bu konuyu işleyeceğiz. Hoşçakalın.

7 Ekim 2011 Cuma

Ücretsiz Yangın Tesisatı P&I Şeması..

Merhaba arkadaşlar;


Bugünkü yazımda sizlerle Yangın Tesisatına ile bir P&I şeması (eski tabirle Kolon şeması) paylaşmak istedim. Yangın Tesisatı konusunda ülkemizdeki genel geçer standartlar ve uygulamalara göre dizayn edilen bu yangın kolon şemasının, çalışmalarınız için bir örnek teşkil etmesini temenni ederim.


Birdahaki yazıda buluşmak üzere, Hoşcakalın..

► Dosyayı Buradan İndirebilirsiniz:

5 Ekim 2011 Çarşamba

AutoCad’de İzometrik Mekanik Tesisat Tasarımları III…

 

Merhaba arkadaşlar, izometrik tasarımlar husundaki makalelerimde bu yazımı, kolon şemaları ve basınçlı kaplar konusuna ayırdım. Bildiğiniz üzere ısıtma klima soğutma projelerinde özellikle hava kanalı projelerine ait kolon şemaları izometrik olarak tasarlanıyor. Bu yazımda tasarımlarda dikkat etmemiz gereken bazı çizim ve notasyon gösterim kaidelerine pratik bir bakış yapacağız ve ardından basınçlı kaplar ile ilgili izometrik çizim kaidelerine giriş yapacağız.

İzometrik hava kanalı şeması çizimlerinde genellikle iki temel renk üzerinden hatlarımızı tasarlıyoruz. Sıcak renkler kalın kalemleri tarif edecek şekilde genellikle kırmızı 0.50 mm kalem kalınlığı ile dağıtıcı kanal hatları için, genellikle sarı renk 0,30 – 0.35 mm kalem kalınlığı ise toplayıcı / egzost kanal hatları için tercih ediliyor.

İzometrik şemalarda hatların kendini göstermesi için daha kalın kalem kalınlıklarıda seçilebilir. Bu durumda 0.50 mm ve 0.35 mm arasındaki kalem kalınlıüğı oranları gözetilerek daha büyük kalem kalınlıkları tercih edilebilir.

Özellikle izometrik kanal şemalarında projecinin tasarımına ve hesap yöntemlerine baz alınan hat değerleri detaylı olarak işlenmelidir. Kanal parçası isimleri, kanal parçası debisi (m3/h), kana parçası içindeki hava hızı (m/sn), kanal ebadı (mm, cm), vb. Bilgiler detaylı olarak izometrik şemalarda gösterilmelidir.

İzometrik şemalarda kanal kalınlıkları ihmal edilse bile, kullanılan malzemelerden dolayı oluşacak çizim değişiklikleri ihmal edilmemelidir, mesela galvaniz çelik saç ile, flexible galvaniz saç arasındaki çizim farkı mutlaka belirtilmelidir.

Yine aynı şekilde izometrik şemalar üzerindeki cihaz özellikleri ve cihazların izometrik kaideler gözetilerek çizilmiş halleride izometrik şemalarda yer alması gerekir. İzometrik şemalarda dikkate alınması gereken başka bir hususda cihaz özellikleri ve kanal parçaları listelerinin hesaplardaki formatına uygun olacak şekilde çizime yerleştirilmesidir.

Özellikle cihaz karakteristiklerini belirleyen, AHU ve Egzost fanları ile ilgili tüm hesap doneleri ve seçim bilgileri izometrik şemalarda yer almalıdır. Cihazların nominal kapasiteleri; hava debileri (m3/h), fan dışı basınç kayıpları (pa), varsa ısıtıcı/soğutucu batarya kapasiteleri (w, kcal/h), kullanılan filtre tipleri (Ulpa, hepa, torba, vs.), elektriksel güçleri (kw) çizim özerinde detaylı olarak belirtilmelidir.

Kanal parçaları listelerinde ise, kanal bölümleri isimnleri, bağlantıları, kanal parçası debisi (m3/h), kanal parçası uzunluğu (m), kanal parçası içindeki hava hızı (m/sn), kanal ebatları (mm, cm), kanal parçası malzemesi (galvaniz, flex, vb.) bilgileri yer almalıdır.

Arkadaşlar, autocad’da izometrik mekanik tesisat tasarımları konusunda hava kanalı tesisatları ile ilgili söyliyebileceğimiz ilk bilgilerimiz bunlar, bu aşamadan sonra mekanik tesisatın aslında bütün yükünü omuzlarında taşıyan basınçlı kapların tasarlanması ile ilgili bir giriş yapalım.

Bilgiğiniz gibi basınçlı kaplar, ortam basıncından farklı olmak üzere negatif veya pozitif basınçlarda çalışan ve ilgili basınç sınıfları gözetilerek imalat ve dizayn şartları oluşturulan, kazanlar, tanklar, silolar, vb cihazlardır. Bu cihazlarla ilgili ilk bilmemiz gereken doneler dizayn şartları dediğimiz kriterlerdir. Bu kriterler tankın imalat ve çalışma şartlarını belirlemede kullanılır.

Örnek olarak bir lpg tankı veya bir kızgın yağ kazanı tasarlanırken dikkate alınması gereken dizayn şartları şunlar olabilir. Tip, bombe tipi, hacim, çap, dizayn kodu, işletme basıncı, test basıncı, işletme sıcaklığı, gövde malzemesi, bombe malzemesi, depolana ürün, korozyon payı, ısıl işlem, radyografik kontrol.

Birdahaki yazımda basınçlı kaplar tasarımını açmaya çalışacağım. hoşçakalın

3 Ekim 2011 Pazartesi

Psikrometride Tekrar Isıtma / Re-Heat II

Merhaba arkadaşlar;

Serinin son yazısında tekrar ısıtma / re-heat üzerine bilgiler vermiş ve konuyu bir örnek ile detaylandıracağımızı belirtmiştik. Yazının devamında örneği dikkatinize sunuyoruz.
İç hava sıcaklığı (trm) : 27 ‘C KT, %50 RH
Oda duyulur ısısı (ODI) : 84,000 kJ/h
Oda Toplam ısısı (OTI) : 159,000 kJ/h
Oda gizli ısısı (OGI) : 75,000 kJ/h
Oda duyulur ısı oranı;
ODIO = 84,000 / 159,000
ODIO = 0.53
İstenilen şartlara göre, psikrometrik diagram üzerinde çizilen oda duyulur ısı oranı doğrusu (ODIO), doyma eğrisini kesmez. trm iç şartları belirtilen konum noktasından itibaren ODIO doğrusunu saat yönünde döndürerek uygun bir kesme noktası seçilir. Bu nokta cihaz çip noktası (tadp) değildir, fakat yakın bir noktadır. Eğriye teğet yada çok düşük sıcaklıklar, donma tehlikesi olduğundan tercih edilmemelidir.
Yeni ODIO değerimizi seçtiğimiz yeni nokta ve eğim ile 0.63 olarak belirliyelim. Y_ODIO = 0.63
Y_ODIO = ODI’ / (ODI’ + OGI)
ODI’ = (Y_ODIO / 1-Y_ODIO) x OGI
ODO’ = 128,000 kJ/h
Tekrar ısıtma miktarı : ODI’ – ODI = 128,000 – 84,000 = 44,000 kj/h bulunur.
Ön ısıtıcı batarya kapasitesini bu yöntem ile bulmuş ve klima cihazımızı şekillendirme konusunda bir adım daha atmış oldu. Bir dahaki yazıda buluşmak üzere, Hoşcakalın..

30 Eylül 2011 Cuma

Sektörden Haberler : Koç Üniversitesi Enerji Tasarrufuyla Öğrencilere Burs Sağlıyor

Elektrik enerjisi ihtiyacının % 100?ünü, ısınma ve sıcak kullanım suyu ihtiyacının % 75?ini Rumelifeneri Kampüsü?nde kurduğu kojenerasyon sistemi ile üreten Koç Üniversitesi, çevreye verilebilecek olumsuz etkilerin sistematik şekilde azaltılmasını amaçlayan ISO 14001 Çevre Yönetim Sistemi belgesi aldı. Koç Üniversitesi, bir yıl içinde enerji ve atıkların geri dönüşümüyle sağladığı tasarruf ile bu kaynağı 19 öğrenciye burs olarak kullandırdı.

Vehbi Koç Vakfı kuruluşu olan Koç Üniversitesi bünyesinde 6 fakülte ve bir yüksekokulda 4 bin 400 öğrenci eğitim görüyor. Kurulduğu 1993 yılından bu yana tüm kaynaklarını her yıl daha fazla burs verebilmek için artırmaya çalışan Koç Üniversitesi, Vehbi Koç Vakfı?nın destekleri ile bugün öğrencilerinin % 60?ına burslu eğitim sağlıyor. Akademik eğitimde mükemmellik merkezi olmayı hedefleyen Koç Üniversitesi, kampüsteki yaşamı da ekolojik yaşama uyum sağlayacak şekilde geliştiriyor.

Bu amaçla, 2005 yılında Koç Üniversitesi Rumelifeneri Kampüsü?nde 2.3 MW?lık Kojenerasyon Tesisi inşa edildi. Entek Elektrik tarafından işletilen tesisle elektrik enerjisi üretilmeye başlandı. Elektrik ve ısı enerjisi ihtiyacını aynı anda karşılayan tesis doğalgaz tüketiminde de önemli tasarruf sağlıyor. Bu yolla, Koç Üniversitesi?nde gereksinim duyulan enerji üretimi sırasında, doğaya salınan karbondioksit miktarında da önemli azalma meydana geliyor. Uygulama sonucu, 534 hanenin ısıtılması durumunda ortaya çıkabilecek kadar az karbondioksit salınımı yapılıyor. Koç Üniversitesi böylece % 75 oranında karbondioksit salınımında azalma sağlıyor.

Koç Üniversitesi?nin 2011 yılında aldığı ISO 14001 Belgesi, kampüste ihtiyaç duyulan tüm hizmetlerin üretimi sırasında çevre performansının izlenmesi ve sürekli iyileştirilmesi temeline dayanıyor. Bu ilkeye dayanarak, Ocak-Haziran 2011 tarihleri arasında Koç Üniversitesi?nde uygulanan atık yönetimi sonucu, sadece kağıt atıkların geri dönüşümüyle bu malzemelerin yeniden üretimiyle oluşabilecek hava kirliliğinde % 74, su kirliliğinde % 35, su kullanımında % 45 azalma sağlandı Plastik atıkların geri dönüşümüyle ise 1.848 KWh enerji tasarrufu elde edildi. Metal atıkların geri kazanımıyla, aynı şekilde enerji tüketiminde % 95, hava kirliliğinde % 90, su kirliliğinde % 97, baca gazı kirletici emisyonunda % 99 azalma yaşanırken, 1088 kg boksit metali, 544 kg kimyasal madde ve 1.904 KWh enerji tasarrufu sağlandı.

Enerji üretimi dışında Koç Üniversitesi?nde evsel atık suların % 95 ? % 97 verimle arıtılarak bahçe sulamada kullanılması da sağlanıyor.

Kaynak: TermoDinamik Dergisi.