13 Ekim 2011 Perşembe

Yangın Tesisatında Hidrolik Hesaplar..

Merhaba değerli arkadaşlar;

Ts825 ısı yalıtım yönetmeliği ile ilgili yazıma devam etmek isterken sizden gelen yorumlar üzerine yangın tesisatında hidrolik hesaplar konusuna değinmenin artık elzem olduğu kanaatine vardım. Arkadaşlar Mekanik tesisat sektörü büyük bir umman, sonsuz bilgi ve deneyim denizi. Tabiki bizler 15 yıllık meslek yaşantımızda çok fırtınalar gördük, şimdiye kadar gemimizi yüzdürmeyi başardık, yalnız bu sene yaşadığımız ekonomik kriz kadar hiç bizi zorlayan günler yaşamamıştık. Biliyorsunuz küresel kriz Türkiye kaynaklı değil fakat rüzgarının bizi rahatsız edeceği ayan beyan ortadaydı. Bu kriz yine sorumsuz yöneticiler sayesinde işten çıkarmalar, iş yeri kapanmaları, büyük ekonomik durgunluk olarak bizlere yansıdı. Basiretsiz yöneticilerin günahını yine bizler çekiyoruz. Allah hepimize kolaylık ve sabır versin.

Gelelim bugünkü yazımızın ana konusuna, arkadaşlar yangın tesisatında boru çapları ve basınç kaybı hesapları belli standartlar ve hesap yöntemleri ile bulunur. Ülkemizde genel geçer yangın standardı Bakanlar kurulu tarafından 12.06.2002 tarihinde 2002/4390 karar sayısı ile yürürlüğe konulan Binaların Yangından Korunması Hakkında Yönetmelik ve NFPA standartlarıdır. İlgili standartlarda Hafif ve Orta tehlike sınıfındaki yapılarda boru çaplarının tablo tahmini yöntemi ile yapılması tavsiye ediliyor, bunun yanında yüksek tehlike sınıfına giren yapılarda boru çapı ve basınç kaybı kesinlikle hidrolik hesaplar kullanılarak yapılmalıdır.

Ülkemizde ve yurt dışında kullanılan hidrolik hesapların basında Hazen-Williams formülü veya Darcy-Weisbach formülü kullanılabilir. Gördüğünüz gibi formüllerin isimleri bu formüllerin geliştirilmesinde katkıda bulunan kişilerden esinlenmiş, inşallah ileride bizimde Ahmet-Mehmet formülümüz olurda, forumlarda eleştiri yapacağız diye dirsek çürütmek yerine bulanlar ile iftahar ederiz. Neyse konuyu dağıtmadan ufak bir hatırlatma yapayım özellikle ikinci formülü yüksel hızlı sistemlerde tercih edebilirsiniz.

Hazen-Williams formülünü açmak gerekirse, 1 metre borudaki basınç kaybını, akma debisi ve boru çapını kullanarak elde ettiğimiz bir formüldür.

Pm = 6.05 x (Qm 1.85 / C 1.85 dm 4.87) x 105

Bu formülde;

Pm : 1 metre borudaki sürtünme direnci (bar/m)

Qm 1.85: Debi (lt/dk.)

C 1.85: sürtünme kayıp katsayısı

dm 4.87: Boru iç çapı (mm)

Sulu sistemlerde debiyi bulabilmek için sistemin ilgili zonundaki maksimum koruma alanını ve tahmini sprinkler sayısının bilinmesi gerekebilir. Daha önceki yazılarımızda bahsettiğimiz gibi sprinkler koruma alanlarını aşağıdaki tabloda bulabilirsiniz.

 

Tehlike sınıf

Debi (lt/dk)

Süre (dk)

Düşük

1000

45

Orta

2000

60

Yüksek

Hidrolik hesap ile

 

Yüksek yapılar

Hidrolik hesap ile

 

Sprinkler sistemlerinde Su debisi ve boru çapı önemli olduğu kadar sistemin dağıtım borularındaki sistem basıncıda büyük önem arzetmektedir. Sprinkler sistemlerinde sadece ilgili debinin ortama aktarılması yangınla mücadele için yeterli bir kriter değildir. İlgili debinin istenilen basınç sınıfında ortama iletilmesi ve oluşacak su sisinin söndürmeye yaptığı katkı göz önünde bulundurulmalıdır.

Sprikler sistemleri genellikle ihtiva ettikleri dağıtım boruları basınç sınıfına göre 3 kısıma ayrılır

 

Düşük basınçlı sistemler

Dağıtım boruları basıncı 12.1 bar altı ve altı

Orta basınçlı sistemler

Dağıtım boruları basıncı 12.1 bar ile 34.5 bar arası

Yüksek basınçlı sistemler

Dağıtım boruları basıncı 34.5 bar ve üstü

Bir dahaki yazımda yangın tesisatında hidrolik hesabın yapılması ile ilgili detaylara bir bakış yapacağız.

Hoşçakalın..

12 Ekim 2011 Çarşamba

AutoCAD Ortamında Kanal Tasarım Özellikleri..

Merhaba,

Mekanik tesisat işlerinde konfora yönelik uygulamalar üzerine yazdığım yazılarımda sıra AutoCAD ortamında kanal tasarım usullerine geldi. Bundan önceki yazılarımızda daha ağırlıklı olarak mühendislik bilgisi size aktarırken bu yazımdan itibaren herkesin merakla beklediği AutoCAD üzerinde çizim usullerine değineceğiz.

Kanal parçası özellikleri

Kanal tasarımında ana esas dağıtıcı/toplayıcı kanal disiplinlerinin mahal özellikleri de göz önüne alınarak menfezlerden cihazlara kadar dizayn edilmesidir. Bu aşamada kanal imalatı için en kolay, basınç kaybı ve sürtünme dirençlerini en aza indiren, homojen bir hava dağıtımı/toplaması sağlayan, ses ve gürültü problemlerinin en aza indiren bir toplama şekli benimsenebilir. Yukarıda saydığımız maddelerin teorilerini ve ugulama özellikleri detaylarına ilerdeki yazılarımızda değineceğiz.

Kanal tasarımında en önemli bileşenler özel parçalar olarak görülür. Kullanılan kanal kesit tipine (dairesel, kare, dikdörtgen, düz oval) göre sınıflandırılabilen özel parçaları genel başlıklar altına almak gerekirse, Daralma/Genişleme parçaları, Ayrılma/Birleşme parçaları, Menfez/Anemostatlar, tasarıdan kaynaklanan özel parçalar (Dirsek, S, Çıkış ve giriş parçaları, vb.) olarak sayabiliriz.

Daralma/Genişleme parçalarına örnek

Ayrılma/Birlşeme parçalarına örnek

Menfez/Anemostat parçalarına örnek

Tasarıdan kaynaklanan özel parçalara örnek :

Kanal Tasarımında kullanılan bağlantı çeşitleri :

Hava kanalı sistemi, her mahalde bulunan dağıtıcı/toplayıcı menfezler, bu menfezleri bir araya getiren kanal parçaları ve bu kanal parçalarının oluşturduğu kanal hatları olarak tariflenebilir. Hava kanalı hesap ve tasarımında genellikle kanal parçaları belli notasyonlar ile isimlendirilirler, bu isimlendirmede harf, sayı veya özel isimler kullanılabilir. Örnek olarak 1 nolu kanal parçası, 1.1 nolu kanal parçası, a kanal parçası veya ab kanal parçası gibi isimlendirmelere günümüz projelerinde rastlanmaktadır.

Kanal parçalarının birleşerek bir kanal hattından söz edilebilmesi için bu kanal parçalarının ilgili özrl parçalar kullanılarak birbirlerine bağlanması gereklidir. Özellikle ayrılma ve Birleşeme kanal parçaları için standart bir kaç bağlantı şekli vardır, Bu özel parçaları T saplama Y pantalon parçası ve W birleşme parçası olarak tanımlayabiliriz. Ayrılma ve birleşeme özel parçalarındaki dikkat edilmesi gereken asıl husus, özel parça basınç kayıpları hesaplanırken Ayrılma ve Birleşme parçaları dışındaki tüm özel parçaların üzerlerine seçildikleri kanal parçasına özel direnç kaybı yaratmalarıdır. Dolayısı ile hiç bir bağlantısı olmayan düz bir hattan bahsedecek olursak bu hat üzerindeki kanal parçaları için hesaplanan basınç kaybı ve bu kanal parçaları üzerine seçilen tüm özel parçaların basınç kayıpları bu kanal hattının fan dışı basınç kaybını oluşturacaktır. Ancak bu çok az rastlanan bir kanal hattı çeşididir. Genellikle kanal hatları bir çok ayrı branşmana dallanan detaylı bir sistemdir. Bu durumda Ayrılma ve Birleşme parçalarındaki Transit geçiş kısmı ve Branşmana ayrılan kısımdaki özel parçalar üzerlerine seçildikleri kanal parçasına değil bağlandıkları kanal parçasına özel direnç kaybı oluştururlar.

Kanal hatları tasarımında çıkan ebatların üst veya alt ebatlara yuvarlanması gerekebilir. Örneğin 30 cm lik bir asma tavan içerisinde hareket edecek bir hava kanalının max. 25 cm. Yüksekliğini geçmemesi istenebilir. Bu gibi durumlarda kanal imalatını kolaylaştırıcı ebatlara yuvarlama yapılması gerekebilir. Türkiyede çok tercih edilen sistem olan +10 mm ara ile ebatlandırma yapılabilir. Bu durumda kanal ebatları küsüratsız olacak şekilde 110-120-130-vb. şekilde verilebilir. ASHRAE nin tavsiyesi doğrultusunda kanal ebatlandırması yapmak istersek + 50 mm ara ile ebatlandırma yapılabilir. Fabrikasyon imalatlar için daha uygun bir ebatlandırma seçeneği budur. Bir çok kanal parçasından oluşan kanal hatlarında yine imalatı kolaylaştırmak açısından sık ebat değişimi yapılmaz, bunun yerine bir kaç debi değişiminde bir, kanalın A veya B ebadı yenilenebilir. Kanal tasarımında bu esneklikleri göz önüne alarak ebat değişimi (çap da olabilir) yanal eksen veya eksenel bir kanal düzergahı boyunca sabit tutulabilir (asma tavan içerisine sığma gibi)

Sevgili arkadaşlar, bu yazımda kanal tasarımı için AutoCAD uygulamalarına bir başlangıç yaptık, buradaki temel bilgilerimizi kullanarak ilerdeki yazılarımda örnek planlar üzerinde kanal tasarımına geçeceğiz. Hoşçakalın.

11 Ekim 2011 Salı

Mimari Plan üzerinde Yangın Tesisatı..

Arkadaşlar, Mühendislikte yangınla mücadele konusunda geçen yazılarımda sizleri bilgilendirmiştim, bu yazımda gerçek mimari planlar üzerinde yangınla mücadele usullerine bakacağız. Mekanik Tesisat projelerinde yangınla mücadele projeleri genellikle sıhhi tesisat paftaları ile entegre olarak tasarlanır, sonuçta yangınla mücadele kullandığımız en büyük silahımız su da sıhhi tesisat pastalarına işleniyor ve yangın hidrofor daireleri de yapının ana su ihtiyacını karşılayan su depoları ve sıhhi tesisat kullanma suyu hidroforları ile entegre çalışıyor.

Mimari planlar üzerinde yangınla mücadelede kullanacağımız sprinkler ve yangın dolapları sistemi ile saha paftalarında hidrant sistemini tasarlarken dikkat etmemiz gereken en büyük husus sprink ve diğer aparatların ihtiyacını karşılayacak debiyi sağlamak üzere seçeceğimiz boru çaplarıdır. Yangın dolapları dizaynı 2” boru çapından başlamaktadır başka bir değişle hattın en ucundaki yangın dolabını besleyecek boru çapı 2” den küçük olmamalıdır. Genellikle 4-5 yangın dolabından sonra çapı bir üst çapa taşımakta fayda var. Sprinklerde ise en küçük boru çapımız 1” dir. Sprinkler tesisatı biraz daha fazla eleman barındırdığından bir boru çapı tablosuna ihtiyacımız olacak.


 

Sprink Sayısı

Boru çapı

1-2

1”

3

1 ¼”

4-5

1 ½”

6-10

2”

11-20

2 ½”

21-40

3”

41-100

4”

101-160

5”

160 ve üzeri

6”

Yukarıdaki tabloyu kullanarak planlar üzerinde sprinklerimizi çaplandırıyoruz. Örnek projemizde ifade edicek olursak

Görüldüğü üzere her sprinkden sonra ilgili adedi besleyecek boru çapını tablomuz yardımı ile plan üzerine işliyoruz. Yeşil ile çizilen sprink merkezli daireler sprink etki alanını ifade ediyor. Yangın paftalarında gözterilmesi gerekmemekle beraber, plan üzerinde sprinklerin müdahale edemeyeceği yerleri ortaya çıkardığı için çizilmesinde fayda var. Yeni bir kural olmalakla beraber ana branşmanların sonlandığı yerlerde projeyi okuyanlara kolaylık sağlaması için beslenen sprink adedini de çapı ile beraber projeye işliyoruz. Bu örnek planda 8 Ad. Lik bir sprink hattını planlamış olduk. Tüm bu hatlar proje üerinde en uygun tesisat şaftını kullanarak hidrofor dairesine indirilir.

Tesis ve yapının yangın risk sınıfına göre sprnikler sisteminin herhangi bir besleme koluna bağlanan sprinklerin koruduğu birim kat için en büyük büyük koruma alanı, düşük ve orta tehlike sınıfı için en fazla 4,800 m2 ve yüksek tehlike sınıfı için en fazla 2,300 m2 olmalıdır.

Yine her sprink ana hattı tesisat şaftlarına bağlanmadan önce bir test ve drenaj vana sistemi ile techiz edilmelidir. Ana sprinkler hattı bir superwizor swichli vana ve flow swich ile sprinkler branşmanına bağlandıktan sonra test ve drenaj vana gurubu ile by-pass edilmelidir. Bu by-pass hattının bir ucu en yakındaki pissu giderine bağlanmalıdır.

Bir dahaki yazımda yangınla müdalece için nasıl bir hidrofor dairesi tasarlanması gerekir bu konuyu işleyeceğiz. Hoşçakalın.

7 Ekim 2011 Cuma

Ücretsiz Yangın Tesisatı P&I Şeması..

Merhaba arkadaşlar;


Bugünkü yazımda sizlerle Yangın Tesisatına ile bir P&I şeması (eski tabirle Kolon şeması) paylaşmak istedim. Yangın Tesisatı konusunda ülkemizdeki genel geçer standartlar ve uygulamalara göre dizayn edilen bu yangın kolon şemasının, çalışmalarınız için bir örnek teşkil etmesini temenni ederim.


Birdahaki yazıda buluşmak üzere, Hoşcakalın..

► Dosyayı Buradan İndirebilirsiniz:

5 Ekim 2011 Çarşamba

AutoCad’de İzometrik Mekanik Tesisat Tasarımları III…

 

Merhaba arkadaşlar, izometrik tasarımlar husundaki makalelerimde bu yazımı, kolon şemaları ve basınçlı kaplar konusuna ayırdım. Bildiğiniz üzere ısıtma klima soğutma projelerinde özellikle hava kanalı projelerine ait kolon şemaları izometrik olarak tasarlanıyor. Bu yazımda tasarımlarda dikkat etmemiz gereken bazı çizim ve notasyon gösterim kaidelerine pratik bir bakış yapacağız ve ardından basınçlı kaplar ile ilgili izometrik çizim kaidelerine giriş yapacağız.

İzometrik hava kanalı şeması çizimlerinde genellikle iki temel renk üzerinden hatlarımızı tasarlıyoruz. Sıcak renkler kalın kalemleri tarif edecek şekilde genellikle kırmızı 0.50 mm kalem kalınlığı ile dağıtıcı kanal hatları için, genellikle sarı renk 0,30 – 0.35 mm kalem kalınlığı ise toplayıcı / egzost kanal hatları için tercih ediliyor.

İzometrik şemalarda hatların kendini göstermesi için daha kalın kalem kalınlıklarıda seçilebilir. Bu durumda 0.50 mm ve 0.35 mm arasındaki kalem kalınlıüğı oranları gözetilerek daha büyük kalem kalınlıkları tercih edilebilir.

Özellikle izometrik kanal şemalarında projecinin tasarımına ve hesap yöntemlerine baz alınan hat değerleri detaylı olarak işlenmelidir. Kanal parçası isimleri, kanal parçası debisi (m3/h), kana parçası içindeki hava hızı (m/sn), kanal ebadı (mm, cm), vb. Bilgiler detaylı olarak izometrik şemalarda gösterilmelidir.

İzometrik şemalarda kanal kalınlıkları ihmal edilse bile, kullanılan malzemelerden dolayı oluşacak çizim değişiklikleri ihmal edilmemelidir, mesela galvaniz çelik saç ile, flexible galvaniz saç arasındaki çizim farkı mutlaka belirtilmelidir.

Yine aynı şekilde izometrik şemalar üzerindeki cihaz özellikleri ve cihazların izometrik kaideler gözetilerek çizilmiş halleride izometrik şemalarda yer alması gerekir. İzometrik şemalarda dikkate alınması gereken başka bir hususda cihaz özellikleri ve kanal parçaları listelerinin hesaplardaki formatına uygun olacak şekilde çizime yerleştirilmesidir.

Özellikle cihaz karakteristiklerini belirleyen, AHU ve Egzost fanları ile ilgili tüm hesap doneleri ve seçim bilgileri izometrik şemalarda yer almalıdır. Cihazların nominal kapasiteleri; hava debileri (m3/h), fan dışı basınç kayıpları (pa), varsa ısıtıcı/soğutucu batarya kapasiteleri (w, kcal/h), kullanılan filtre tipleri (Ulpa, hepa, torba, vs.), elektriksel güçleri (kw) çizim özerinde detaylı olarak belirtilmelidir.

Kanal parçaları listelerinde ise, kanal bölümleri isimnleri, bağlantıları, kanal parçası debisi (m3/h), kanal parçası uzunluğu (m), kanal parçası içindeki hava hızı (m/sn), kanal ebatları (mm, cm), kanal parçası malzemesi (galvaniz, flex, vb.) bilgileri yer almalıdır.

Arkadaşlar, autocad’da izometrik mekanik tesisat tasarımları konusunda hava kanalı tesisatları ile ilgili söyliyebileceğimiz ilk bilgilerimiz bunlar, bu aşamadan sonra mekanik tesisatın aslında bütün yükünü omuzlarında taşıyan basınçlı kapların tasarlanması ile ilgili bir giriş yapalım.

Bilgiğiniz gibi basınçlı kaplar, ortam basıncından farklı olmak üzere negatif veya pozitif basınçlarda çalışan ve ilgili basınç sınıfları gözetilerek imalat ve dizayn şartları oluşturulan, kazanlar, tanklar, silolar, vb cihazlardır. Bu cihazlarla ilgili ilk bilmemiz gereken doneler dizayn şartları dediğimiz kriterlerdir. Bu kriterler tankın imalat ve çalışma şartlarını belirlemede kullanılır.

Örnek olarak bir lpg tankı veya bir kızgın yağ kazanı tasarlanırken dikkate alınması gereken dizayn şartları şunlar olabilir. Tip, bombe tipi, hacim, çap, dizayn kodu, işletme basıncı, test basıncı, işletme sıcaklığı, gövde malzemesi, bombe malzemesi, depolana ürün, korozyon payı, ısıl işlem, radyografik kontrol.

Birdahaki yazımda basınçlı kaplar tasarımını açmaya çalışacağım. hoşçakalın

3 Ekim 2011 Pazartesi

Psikrometride Tekrar Isıtma / Re-Heat II

Merhaba arkadaşlar;

Serinin son yazısında tekrar ısıtma / re-heat üzerine bilgiler vermiş ve konuyu bir örnek ile detaylandıracağımızı belirtmiştik. Yazının devamında örneği dikkatinize sunuyoruz.
İç hava sıcaklığı (trm) : 27 ‘C KT, %50 RH
Oda duyulur ısısı (ODI) : 84,000 kJ/h
Oda Toplam ısısı (OTI) : 159,000 kJ/h
Oda gizli ısısı (OGI) : 75,000 kJ/h
Oda duyulur ısı oranı;
ODIO = 84,000 / 159,000
ODIO = 0.53
İstenilen şartlara göre, psikrometrik diagram üzerinde çizilen oda duyulur ısı oranı doğrusu (ODIO), doyma eğrisini kesmez. trm iç şartları belirtilen konum noktasından itibaren ODIO doğrusunu saat yönünde döndürerek uygun bir kesme noktası seçilir. Bu nokta cihaz çip noktası (tadp) değildir, fakat yakın bir noktadır. Eğriye teğet yada çok düşük sıcaklıklar, donma tehlikesi olduğundan tercih edilmemelidir.
Yeni ODIO değerimizi seçtiğimiz yeni nokta ve eğim ile 0.63 olarak belirliyelim. Y_ODIO = 0.63
Y_ODIO = ODI’ / (ODI’ + OGI)
ODI’ = (Y_ODIO / 1-Y_ODIO) x OGI
ODO’ = 128,000 kJ/h
Tekrar ısıtma miktarı : ODI’ – ODI = 128,000 – 84,000 = 44,000 kj/h bulunur.
Ön ısıtıcı batarya kapasitesini bu yöntem ile bulmuş ve klima cihazımızı şekillendirme konusunda bir adım daha atmış oldu. Bir dahaki yazıda buluşmak üzere, Hoşcakalın..

30 Eylül 2011 Cuma

Sektörden Haberler : Koç Üniversitesi Enerji Tasarrufuyla Öğrencilere Burs Sağlıyor

Elektrik enerjisi ihtiyacının % 100?ünü, ısınma ve sıcak kullanım suyu ihtiyacının % 75?ini Rumelifeneri Kampüsü?nde kurduğu kojenerasyon sistemi ile üreten Koç Üniversitesi, çevreye verilebilecek olumsuz etkilerin sistematik şekilde azaltılmasını amaçlayan ISO 14001 Çevre Yönetim Sistemi belgesi aldı. Koç Üniversitesi, bir yıl içinde enerji ve atıkların geri dönüşümüyle sağladığı tasarruf ile bu kaynağı 19 öğrenciye burs olarak kullandırdı.

Vehbi Koç Vakfı kuruluşu olan Koç Üniversitesi bünyesinde 6 fakülte ve bir yüksekokulda 4 bin 400 öğrenci eğitim görüyor. Kurulduğu 1993 yılından bu yana tüm kaynaklarını her yıl daha fazla burs verebilmek için artırmaya çalışan Koç Üniversitesi, Vehbi Koç Vakfı?nın destekleri ile bugün öğrencilerinin % 60?ına burslu eğitim sağlıyor. Akademik eğitimde mükemmellik merkezi olmayı hedefleyen Koç Üniversitesi, kampüsteki yaşamı da ekolojik yaşama uyum sağlayacak şekilde geliştiriyor.

Bu amaçla, 2005 yılında Koç Üniversitesi Rumelifeneri Kampüsü?nde 2.3 MW?lık Kojenerasyon Tesisi inşa edildi. Entek Elektrik tarafından işletilen tesisle elektrik enerjisi üretilmeye başlandı. Elektrik ve ısı enerjisi ihtiyacını aynı anda karşılayan tesis doğalgaz tüketiminde de önemli tasarruf sağlıyor. Bu yolla, Koç Üniversitesi?nde gereksinim duyulan enerji üretimi sırasında, doğaya salınan karbondioksit miktarında da önemli azalma meydana geliyor. Uygulama sonucu, 534 hanenin ısıtılması durumunda ortaya çıkabilecek kadar az karbondioksit salınımı yapılıyor. Koç Üniversitesi böylece % 75 oranında karbondioksit salınımında azalma sağlıyor.

Koç Üniversitesi?nin 2011 yılında aldığı ISO 14001 Belgesi, kampüste ihtiyaç duyulan tüm hizmetlerin üretimi sırasında çevre performansının izlenmesi ve sürekli iyileştirilmesi temeline dayanıyor. Bu ilkeye dayanarak, Ocak-Haziran 2011 tarihleri arasında Koç Üniversitesi?nde uygulanan atık yönetimi sonucu, sadece kağıt atıkların geri dönüşümüyle bu malzemelerin yeniden üretimiyle oluşabilecek hava kirliliğinde % 74, su kirliliğinde % 35, su kullanımında % 45 azalma sağlandı Plastik atıkların geri dönüşümüyle ise 1.848 KWh enerji tasarrufu elde edildi. Metal atıkların geri kazanımıyla, aynı şekilde enerji tüketiminde % 95, hava kirliliğinde % 90, su kirliliğinde % 97, baca gazı kirletici emisyonunda % 99 azalma yaşanırken, 1088 kg boksit metali, 544 kg kimyasal madde ve 1.904 KWh enerji tasarrufu sağlandı.

Enerji üretimi dışında Koç Üniversitesi?nde evsel atık suların % 95 ? % 97 verimle arıtılarak bahçe sulamada kullanılması da sağlanıyor.

Kaynak: TermoDinamik Dergisi.

29 Eylül 2011 Perşembe

Yangınla Mücadele Basınçlandırma Sistemleri..

Merhaba arkadaşlar,

Yangınla mücadelede, ıslak ve kuru tip yangın söndürme sistemleri ne kadar elzemse, Basınçlandırma sistemleride bir okadar gerekli ve hayat kurtarma kapasitesine sahip donatılardır. Bildiğiniz üzere konut dışı yapılarda yapı yüksekliği 21.50 m. , konutlarda ise yapı yüksekliği 51.50 m. Yi geçen tüm kapalı merdivenlerde basınçlandırma sistemleri yapılmalıdır. Yine aynı şekilde 4 bodrum kattan fazla bodruma sahip binalarda ve otoparklarda yangın merdivenlerinde basınçlandırma sistemleri yapılmalıdır.

Bina içi yangınlarda insan hayatı için istatiksel olarak bulunan asıl tehlike faktörü duman zehirlenmeleridir. Özellikle yüksek yapılarda yüksek tutuşma sıcaklığına ve az duman yayma özelliğine bağlı olarak seçilen yapı bileşenleri ve mobilya ile aksamlar tercih edilmektedir. Hal böyle olunca hem yangının yayılmasını önlemek hemde duman oluşumunu yönlendirmek ve tahileye etmek için yangın basınçlandırma sistemleri elzem hale gelmiştir.

Duman tahliye ve basınçlandırma sistemlerini anlamak için birazda duman hareketini oluşturan etmenleri incelemekte fayda var. Yangın anında ortama yayılan ve yangınla mücadeleyi ve tahliye işlemlerini güçleştiren duman hareketleri belli başlıklar altında irdelenebilir, bunlar ısıl genleşme, yangın sonucu oluşan sıcak gazların etkisi , baca etkisi ve rüzgar etkisidir. Bu faktörlerden pencerelerin kırık olmadığı zamanlarda sıcak gazların etkisi daha büyükken, bina yüzeyinde açıklıklar ve/veya kırık pencereler varsa baca etkisi daha büyük olur.

Yangınla mücadelede özellikle yangın merdivenlerinin basınçlandırılması büyük önem taşımaktadır. Basınçlandırılan merdiven kovası ile bina kullanım alanları arasındaki basınç farkı en az 50 Pa olmalıdır.

Öncelikle basınçlandırma hesabına dahil edilecek mahallerin yapısal özelliklerine bir bakalım.

Merdiven kovası : 3 m x 3 m = 18 m2 x 3 m = 54 m3

Koridor : 1.5 m x 9 m = 13.5 m2 x 3 m = 41 m3

Bina kat adedi : 10

Normalde yangın sınıfına ve ortamdaki yanıcı maddelerin fiziksel özelliklerine bağlı olmakla beraber, yangın mahallinde ortam sıcaklığı 600°C kadar çıkabilmektedir. Yangın merdivenlerini çevreleyen kaçış yolları ise, zaten BYKY 2002’ye göre yangın mahallinin tahliye edilmesi amacı ile uygun kriterler gözetilerek tasarlanacağı için yangın mahalli şartlarından uzak olacaktır.

Yangın mahallindeki sıcak gazlarıni komşu mahaller ile arasında yarattığı basınç farkı aşağıdaki denklem ile ifade edilebilir.

Bu formülde;

Pf : Yangının sebeb olduğu basınç farkı (Pa)

g : yerçekimi ivmesi (m/sn2)

Patm : mutlak atmosferik basınç (Pa)

R : Evrensel gaz sabiti (J/KgK)

TD : dış ortamın mutlak sıcaklığı (K)

TF : yangın bölmesi mutlak sıcaklığı (K)

h : Yangın bölmesi yüksekliği (m)

hn : nötral düzlemin yüksekliği (m)

Bu kısımda bahsi geçen nötral düzelem, yangın sebebi ile oluşan maksimum şartlar ile (basınç, sıcaklık, vb.) mahal normal şartları arasındaki değerlerin eşitlendiği düzlem bölgesidir. Ortamlar arasındaki basınç farkı zaten TYKY 2002 de zikredildiğinden dolayı bu formülü işletmeden direk olarak hava debisi formülünü irdeliyebiliriz. Yangın merdiveni gibi basınçlandırılan hacimlerde, pencere kullanılmadığı durumlarda, sızıntı alanlarından geçen hava debisinin bulunması gerekicek, bunun için ASHRAE de dahil olmak üzere bir çok yöntem ve formül mevcut, ben biraz daha basit olan aşağıdaki formülü uygulayarak tespit edilen basınç farklarındaki sızıntı miktarını ve dolayısı ile yangın merdiveni basınçlandırma fanı debisine ulaşacağım.

Q = 0.83 x Ae x √P

Bu kısımda

Q : hava debisi (m3/s)

0.83 : boyutsuz katsayı BS 5588 Part 4’e göre

Ae : toplam efektif sızıntı alanı (m2)

P : ortamlar arasındaki basınç farkı (Pa)

Ae toplam efektif sızıntı alanı için yangın merdiveni ile kaçış koridorunu ayıran tek kanatlı yangın kapısı için 0.01 m2 ile 0.03 m2 değeleri arasında bir değer tespit edilebilir tabiki en doğru seçim üretici kataloglarından alınacaktır. Basınç farkı hesabında en kritik değerlerden olan efektif sızıntı alanı yangın merdiveni kapısında eşik ve pervazlardaki sızıntı aralıkları dahil göz önünde bulundurulmalıdır.

Bu örneğe göre zemin kattaki ana tahliye kapındaki sızıntı alanı, 0.04 m2 ve diğer 9 kattaki yangın merdiveni sızıntı alanı ise 9 x 0.03 m2 = 0.27 m2 olmak üzere toplam 0.31 m2 olmaktadır, istenilen basınç farkının 50 Pa olduğunu göz önüne alırsak, formülden

Q = 0.83 x 0.31 x √50

Q = 1.82 m3/sn = 6600 m3/h

Değeri bulunacaktır. Burada hassasiyetle üzerinde durulması gereken nokta, 50 Pa basınç farkı istenilen durumlarda bulunacak debinin, yangın anında sızıntı aralığında istenilen 1 m/sn hava hızı ile debi hesaplanması durumundaki hallerden küçük çıkabileceğidir. Bu yüzden iki sistem karşılaştırılmalı ve büyük debi tercih edilmelidir.

Yinede tekrarlamak gerekirse, yangın basınçlandırma sistemleri için bu işin kaynağına inen, ekmek parasını bundan çıkartan yangıncı firmalardan destek almakta fayda var, herzaman söylediğim gibi bir mekanik tesisat projesinin %75’i cihaz ve marka bağımsız tamalanabilir, yalnız geri kalan %25 hesap ve tasarım süreci bu aşamadan sonra seçilecek cihaz ve markalara bağlıdır, bu sebebten eskiden kalma alışkanlıklar ile proje üzerinde marka olmaz demiyerek seçilen cihazları ve markaları (veya muadili) ibaresi ile projeleriniz ekleyiniz.

Son cümlelerimi konu dışı yazacağım, biliyorsunuz Mekanik tesisat engin bir deniz gibi, hele birde AutoCAD ile bu iş bütünleşince ferdi başarılar daha da kıymetli oluyor, TesisatGuncesi.com blog sitemize Mekanik Tesisat veya Autocad  çözümleri konularında makale göndermek isterseniz sizlere gereken yardımı sunacağız, bilgilerinizi paylaşmanız dileği ile, hoşçakalın.

28 Eylül 2011 Çarşamba

AutoCAD’de Örnek Bir Kalorifer Projesi IV

 

Merhaba arkadaşlar,

Bugünkü yazımda, ısıtma klima soğutma projelerinin tasarlanmasında dikkat edilmesi gereken hususlardan, kalorifer tesistına ait olanları irdelemeye devam ediyoruz. AutoCAD’de örnek bir kalorifer projesi yazımda çizime başlama ve hesaba başlama ile ilgili püf noktalarını öğrendiniz, bu yazdıda da kalorifer tesisatı projesi çizmeye başlamadan önce yapmamız gerek K Değeri hesabı ve buhar geçişi ve yoğuşma hesaplarına bakacağız.

Bildiğiniz üzere, bir mahalin ısıtma ve soğutma yüklerini bulmak için bazı hesaplama usullerinden yararlanıyoruz, bu hesap usullerinde kullanılan bir çok kat sayı ve hesap yöntemi ise ilgili hesabın dahil olduğu, DIN, TS, ASHRAE gibi standartlar ile tespit ediliyor. Ülkemizde ısıl hesapların yapılması için gerekli yapı bileşenlerinin ısı iletim katsayıları ve bina ısı yalıtım hesapları TS 825 nolu, 2000 yılına ait kanun ile zorunluluk haline gelmiştir.

Önceki yazımızda bu standarda atıf yaparak, MTH Paket yazılımın bir modülü olan MTH için K Değeri Hesabı ile ısı iletim katsayıları hesabını tamamlamıştık. Isı iletim katsayıları hesabında birinci geçer kural, TS 825’de geçen ısı bölgelerine göre bir yapı malzemesinin ısı iletim katsayısının bu standartda zikredilen maksimum değeri aşmamasıdır. Eğer mimarların hayali bir güneş evi veya piramit benzezi fantastik bir yapı ile ilgili çalışmıyorsanız, muhtemelen kullanacağınız malzemeler ve yapı bileşenlerinin ısı iletim katsayıları bu ilgili sınır değerleri altında kalacaktır. Isı bölgelerine göre bir yapı malzemesinin maksimum ısı iletim katsayısı aşağıdaki tablodaki kadar olabilir.

UD

UT

Ut

Up

1. Bölge

0.80

0.50

0.80

2.80

2. Bölge

0.60

0.40

0.60

2.80

3. Bölge

0.50

0.30

0.45

2.80

4. Bölge

0.50

0.25

0.40

2.80

Bu tabloda;

UD : Dış duvar ısı iletim katsayısı (W/m2K)

UT : Çatı ısı iletim katsayısı (W/m2K)

Ut : Toprak temaslı döşeme ısı iletim katsayısı (W/m2K)

Up : Dış pencere ve kapı ısı iletim katsayısı (W/m2K)

Örnek projemiz için ısı iletim katsayılarını bulduktan sonra, TS 825 normunda geçen ikinci hesap kontrolü bizi bekliyor, bildiğiniz üzere yapı bileşenlerinin zaman içerisinde ısı iletim özelliklerini, yapı malzemelerinin kimyasal özelliklerini, görünüş ve işlevlerini bozan rutubet ve nemi kontrol altına alınması gerekecektir. Bazı mahallerde duvarlarda ve tavanlarda özellikle küf ve mantar oluşmöası ile kendini belli eden yoğuşma problemleri özellikle projenin bu safhasında belirlenerek daha oluşmadan önlem alınabilir ve giderilebilir.

TS825 içerisinde buhar geçişi ve yoğuşma olarak adlandırılan bu durum, basit bir iki hesap ile tespit edilebilir ve sınır değerlerin içinde kalıp kalmadığı irdelenebilir. Bu hesap çeşidinde özellikle yapı bileşenini oluşturan yapı malzemeleri katmanları arasındaki sıcaklık farkları ve doymuş su buharı değerleri dikkate alınıyor.

Yoğuşmayı kısaca tabir edecek olursak, ASHRAE nin tavsiye ettiği standart atmosfer hesap yöntemine göre, soluduğumuz hava çişitli gazların bir karışımıdır, bu gazlardan bir taneside su buharıdır. Su buharı havanın termodinamik özelliklerine göre çeşitli davranışlar sergiler, örnek olarak konfor uygulaması dediğimiz 24 °C ve %50 RH değerlerinde 1 kg hava içerisindeki nem miktarı yaklaşık 9.35 gr/kg dır. Buradaki RH ifadesi izafi nem miktarı olup aynı kuru termo metre sıcaklığında havanın taşıyabileceği maksimum nem miktarının oransal ifadesidir. Bu örmekte geçen değerlerleri MTH için Psikrometrik diagram yazılımı ile çok rahat bir şekilde bulabilirsiniz.

Şekilde görülen 1 noktası 24°C kuru termometre sıcakılığına ve %50 RH izafi neme sahiptir. Bu değerler hemen hemen oturma odası veya yatka odası konfor değerleri ile örtüşmektedir. 1 noktasının bir diğer standart atmosfer özelliği ise çiğlenme noktasıdır.Çiğlenme sıcaklığı hava içerisindeki su buharının, buhar fazından su fazına geçiş sıcakılığdır. Bu örnekte 12.94 °C kuru ve yaş termometre sıcaklığına denk gelmektedir.

Bu küçük psikrometrik hatırlatmadan sonra yoğuşma konusuna geri dönelim, Mahalimizi çevreyen yapı bileşenlerini yüzey sıcaklıkları ve bu yapı bileşenlerini oluşturan yapı malzemeleri katmanları arasındaki sıcaklıklar, bu yapı bileşenlerinde bir yoğuşma olup olmıyacağını belirler. Şekilde bir yapı bileşenini oluşturan yapı malzmeleri katmanları arasındaki doymuş su buharı basıncı grafiğini görüyorsunuz.

1-2-3-4 nolu katmanlar arasında, iç yüzeyden dış yüzeye doğru olmakla berber, doymuş su buharı basıncının düşüşünü izlliyebilirsiniz. MTH için K değeri hesabı modülünde katmanlar arasındaki sıcaklık ve doymuş subuharı basıncı değerleri otomatik olarak hesaplanıyor.

Yoğuşma ve buhar geçişi hesap penceresindeki dört sekmeyi sıra ile gezerek ilgili hesapların otomatik olarak yapılmasını sağlıyabilirsiniz. Yoğuşma ve buhar geçiş hesaplarındaki kriter yoğuşan suyun miktarının 1 kg/m2 den küçük olması ve buharlaşan suyun kütlesinin yoğuşandan fazla olmasıdır. Bu kritik kontrolü ve diğer hesapları MTH için K değeri hesabı sizin için kolaylıkla yapabilmektedir.

Kalorifer projemizi oluşrutan tüm yapı bileşenleri için örnek uygulamayı yapmak sadece dakikalar alıyor, sizede çayınızı veya kahvenizi içmek için bol bol vakit kalıyor. Bir dahaki yazımda örnek kalorifer tesisatı projesi için ısı yalıtım formu hazırlanmasını irdeliyeceğiz. Hoşçakalın.

27 Eylül 2011 Salı

By-Pass Oranları..

Merhaba arkadaşlar;

Merkezi sistem klima satrallerinde yüksek debili sevk havasını şartlandırmak ve istenilen konfor şartlarında tutabilmek için soğutma yükünün dikkatlice analiz edilmesi ve klima cihazının projeye uygun seçilmesi esastır. Uygulamada sistem üzerinde tam kontrolü sağlamak için her zaman diğer karışım ve kontrol aparatları sistemde techiz edilir, pik yükün değişmesi, dizayn değerlerinin gün içindeki dış ortam şartlarına uymaması, vb bir çok nedenden ötürü otomatik kontrol ve bina yönetim sistemleri projeye eklenmelidir. Bunun yanında klima satrallerinin etkin olarak tam istenilen şartlarda çalışması için elimizdeki en etkin enstürüman by-pass faktörüdür. Kabaca serpantinden şartlanmadan geçen hava olarak tanımlıyabileceğimiz by-pass havası, havanın projelendirilmiş santralden çıkış noktasına ulaşılabilmesi için göz önünde bulundurulmalıdır.

Çeşitli uygulamalar için tercih edilebilecek by-pass faktörü aşağıda dikkatinize sunulmuştur.

Konutlar : 0.3 ile 0.5
Küçük mağazalar : 0.2 ile 0.3
Alışveriş merkezleri : 0.1 ile 0.2
Fabrikalar : 0.05 ile 0.1
Hastane ameliyat odaları : 0 ile 0.1

Oranlardan anlaşılacağı üzere ortama gönderilecek sevk havası noktasının en hassas şekilde belirlenmesinde düşük by-pass oranlarını tercih etmek daha uygun olacaktır.

MTH için psikrometrik diagram yazılımında by-pass oranı kullanıcıya sunularak daha hassas bir hesap yapılması sağlanıyor. 16 çeşit hazır proses içinden seçeceğiniz projenize uygun prosesler içerisinde by-pass oranının değişiminin sevk havası sıcaklığı üzerindeki etkisi aşağıdaki proseslerde açıkca görülüyor.


Şekil.1 by-pass oranı 0.1


Şekil.2 by-pass oranı 0.2

Birdahaki yazıda görüşmek üzere…